The Implications of Climate Change and Loss of Biodiversity:
Why Action is Needed Now

Robert T. Watson
Strategic Director of the Tyndall Centre, UEA
Chair of Intergovernmental Panel on Biodiversity and Ecosystem Services
Former Chair of Intergovernmental Panel on Climate Change

Tokyo, Japan
8 September 2017
Summary of the Presentation

• Policy framework
• Human-induced climate change
• Loss of biodiversity and degradation of ecosystem services
• Implications of human induced climate change and loss of biodiversity for the UN sustainable development goals
Policy Framework

• Paris climate agreement
• 20 Convention on Biodiversity Aichi goals and targets
• 17 United Nations Sustainable Development Goals

The large majority of Governments have signed these three global agreements
Elements of the 2015 Paris Agreement

Article 2: Limit the global temperature increase to below $2^\circ$$C$, and pursue efforts to limit the temperature increase to $1.5^\circ$$C$ above pre-industrial levels.

Article 4: Global emissions of greenhouse gases should peak as soon as possible, and anthropogenic emissions by sources and removal by sinks should balance by the second half of this century.

Article 4.2: Each Party must prepare Nationally Determined Contributions (NDCs).

Article 7: A recognition that there is a significant need for adaptation.

Article 9: Developed countries will provide financial resources to assist developing countries with respect to mitigation and adaptation, with a floor of US$100B per year.

Articles 4.9/14: A global stock take will take place every 5 years, starting in 2023.
Strategic Plan for Biodiversity 2011-2020

VISION
By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people.

MISSION
Take effective and urgent action to halt the loss of biodiversity...

STRATEGIC GOAL A
Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society

STRATEGIC GOAL B
Reduce the direct pressures on biodiversity and promote sustainable use

STRATEGIC GOAL C
Improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity

STRATEGIC GOAL D
Enhance the benefits to all from biodiversity and ecosystem services

STRATEGIC GOAL E
Enhance implementation through participatory planning, knowledge management and capacity building

IMPLEMENTATION SUPPORT MECHANISMS
The Aichi Biodiversity Targets

Goal A
Mainstreaming

Goal B
Direct drivers

Goal C
Improved status

Goal D
Enhance benefits

Goal E
Implementation
Climate Change
Climate Change is one of the Greatest Threats to Human Well-Being

- There is no doubt that human activities are changing the Earth’s climate, warmer temperatures, more extreme weather events and sea level rise.

- Most of the impacts of climate change are harmful, especially in developing countries, and will undermine the ability of many countries to achieve the 17 UN Sustainable Development Goals (SDGs).

- All countries need to transition to a low-carbon economy to limit human-induced climate change as soon as possible, using cost-effective low-carbon technologies, which are currently available.

- The current Paris Agreement Pledges are inadequate to limit climate change to 2°C, let alone the aspirational target of 1.5°C, hence they need to be strengthened.

- The time for action is now – we need to both reduce the emissions of greenhouse gases and adapt to a changing climate.
Observed and Simulated Trends in Temperature

Comparison of observed and simulated climate change

All Figures © IPCC 2013
Observed Impacts Due to Climate Change

A map illustrates the observed impacts of climate change across various regions of the world, including physical systems like glaciers, snow, and ice; biological systems such as terrestrial ecosystems and wildfire; and human and managed systems, including food production and livelihoods.
Projections of Temperature and Precipitation
Maps of CMIP5 multi-model mean results

(a) Change in average surface temperature (1986–2005 to 2081–2100)

RCP 2.6

RCP 8.5

(b) Change in average precipitation (1986–2005 to 2081–2100)
Figure 18. Linkages between the buildup of atmospheric CO$_2$, the increase in ocean acidity and the decrease in carbonate ion concentration.

Approximately 25% of the CO$_2$ emitted by humans in the period 2000 to 2006 was taken up by the ocean where it combined with water to produce carbonic acid, which releases a proton that combines with a carbonate ion. This decreases the concentration of carbonate, making it unavailable to marine organisms that form calcium carbonate shells. (Source: Hoegh-Guldberg et al. 2007)
Projected Impacts of Climate Change

- Higher temperatures and more variable precipitation (resulting in an increase in floods and droughts), coupled with an increase in extreme events, e.g., intense cyclones, will adversely impact **agriculture and water resources** (quality and quantity)

- An increase in heavy precipitation events, will increase **soil erosion** with the potential of increase siltation of reservoirs and **landslides**

- Sea level rise will impact **coastal infrastructure and local communities**, including salt water intrusion impacting **water quality and agriculture**

- Ocean acidification will adversely impact on **fisheries and coral reefs**

- Increased incidence of **hunger, heat stress mortality, vector and water-borne diseases**

- Warmer temperatures, extreme weather events, and more variable precipitation will adversely impact on **biodiversity and ecosystems**

Poor people and developing countries are the most vulnerable
Tackling the Challenge of Climate Change – a near-term actionable agenda

• Significant cost-effective potential to rapidly increase energy efficiency in all sectors with existing commercially available technologies

• Significant scope for the early deployment of renewable energy technologies (wind, solar and possibly modern biomass), if supported with appropriate policies and increased public and private sector financing

• An effective price on carbon to reflect the health and environmental costs of emissions

• A systems-wide transformation towards a low-carbon economy requires policies to catalyze behavioural change across societies

• The least efficient coal plants should be retired and no more coal plants without carbon capture and storage should be built
Global CO\textsubscript{2} Emissions

- IPCC AR5 2 Degree
- RCP 6.0
- RCP 4.5
- RCP 2.6
- RCP 8.5
- GEA (SE4ALL)

- reductions of 35-75% by 2050
- Peak by 2020
- almost zero or negative in the long term
Staying within the 2°C target

Credit: UNEP, 2015 https://www.dropbox.com/sh/vk018yr6h5xulnc/AAB-ISJFv_Xy7BFF4uBK1UVWwA?dl=0
The INDCs present a real increase in the ambition level compared to a projection of current policies. The emissions gap in both 2025 and 2030 will be very significant and ambitions will need to be enhanced urgently.

Credit: UNEP, 2015
The Truth about the Paris Agreement

While the Paris Agreement is an important step to limit human-induced climate change, the pledges by 189 nations are inadequate to achieve the 2°C target - what is needed is a doubling or tripling of efforts.

Global Temperature Could Reach the 2°C Threshold by 2050-2060 and the 1.5°C aspirational target by the early 2030s.

Without additional actions to reduce greenhouse gas emissions we are on pathway to 3-4°C.
Biodiversity and Ecosystem Services
What is biodiversity?

The variety of life
at all levels...
... genes, populations, species and ecosystems...
... land, water and air.
... and the interactions between living things
What are ecosystem services?

The benefits people derive from ecosystems

<table>
<thead>
<tr>
<th>Ecosystem service type</th>
<th>Final ecosystem services (example of goods)</th>
<th>Intermediate ecosystem services and processes</th>
</tr>
</thead>
</table>
| **Provisioning** | Crops, livestock, fish *(food)*
Trees, standing vegetation, peat *(fibre, energy, carbon seq.)*
Water supply *(domestic and industrial water)*
Wild species diversity *(Recreation, food, disease/pest control)* | |
| **Cultural** | Meaningful places *(Recreation, tourism, Spiritual/religious)*
Socially valued land/waterscapes *(Recreation, tourism, spiritual/religious)* | |
| **Regulating** | Climate regulation *(equable climate)*
Pollination
Hazard regulation *(erosion control, flood control)*
Noise regulation *(noise control)*
Waste detoxification and purification *(pollution control)*
Disease and pest regulation *(disease and pest control)* | Pollination |
Species extinctions

Human activities have taken the planet to the edge of a massive wave of species extinctions, further threatening our own well-being.
Unprecedented change: Ecosystems

Conversion of original biomes

- MEDITERRANEAN FORESTS, WOODLANDS, AND SCRUB
- TEMPERATE FOREST STEPPES AND WOODLANDS
- TEMPERATE BROADLEAF AND MIXED FORESTS
- TROPICAL AND SUB-TROPICAL DRY BROADLEAF FORESTS
- FLOODED GRASSLANDS AND SAVANNAS
- TROPICAL AND SUB-TROPICAL GRASSLANDS, SAVANNAS, AND SHRUBLANDS
- TROPICAL AND SUB-TROPICAL CONIFEROUS FORESTS
- DESERTS
- MONTANE GRASSLANDS AND SHRUBLANDS
- TROPICAL AND SUB-TROPICAL MOIST BROADLEAF FORESTS
- TEMPERATE CONIFEROUS FORESTS
- BOREAL FORESTS
- TUNDRA

Fraction of potential area converted

- Loss by 1950
- Loss between 1950 and 1990
- Projected loss by 2050

-10 0 10 20 30 40 50 60 70 80 90 100 %
Drivers of biodiversity loss growing

Result of past evolution

Driver’s impact on biodiversity over the last century

<table>
<thead>
<tr>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
</table>

What happens today

Driver’s actual trends

- Decreasing impact
- Continuing impact
- Increasing impact
- Very rapid increase of the impact

Source: Millennium Ecosystem Assessment
2020 Aichi Targets

Mainstreaming
1. Aware of values of biodiversity
2. Biodiversity values integrated into national accounting
3. Eliminate subsidies and promote subsidies to protect biodiversity
4. Implement sustainable production and consumption plans

Direct drivers
1. Half the loss of natural habitats
2. Marine species harvested sustainably
3. Agriculture, forestry and aquaculture managed sustainably
4. Pollution levels reduced to avoid impacts on biodiversity
5. Invasive alien species under control
6. Minimize impacts of climate change and ocean acidification on coral reefs

Improved status
1. Terrestrial (17%) and marine (10%) protected areas
2. Prevent extinction of threatened species
3. Maintain genetic diversity of cultivated plants, wild relatives maintained

Enhanced benefits
1. Restore ecosystem services – water, health, livelihoods and well-being
2. Enhance carbon storage
3. Implement equitable sharing of benefits – Nagoya Protocol

Implementation
1. National actionable biodiversity plans developed and implemented
2. ILK respected
3. Improved scientific understanding
4. Mobilize financial resources
GBO-4 “dashboard”: Assessment of progress towards the Aichi Biodiversity Targets

1. Moving away from Target
2. No progress towards target
3. Progress towards target, but not to achieve it
4. On track to achieve Target
5. On track to exceed Target

No clear evaluation
Insufficient information to evaluate progress
Progress towards the Aichi Biodiversity Targets: 55 Indicators
GBO-4 Assessment
SDGs Affected by Climate Change and Loss of Biodiversity

1. End poverty in all its forms everywhere
2. End hunger, achieve food security and promote sustainable agriculture
3. Ensure healthy lives and promote well-being for all at all ages
4. Ensure inclusive and equitable quality education and promote life-long learning opportunities for all
5. Achieve gender equality and empower all women and girls
6. Ensure availability and sustainable management of water and sanitation for all
7. Ensure access to affordable, reliable, sustainable, and modern energy for all
8. Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all
9. Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
10. Reduce inequality within and among countries
11. Make cities and human settlements inclusive, safe, resilient and sustainable
12. Ensure sustainable consumption and production patterns
13. Take urgent action to combat climate change and its impacts
14. Conserve and sustainably use the oceans, seas and marine resources for sustainable development
15. Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss
16. Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels
17. Strengthen the means of implementation and revitalize the global partnership for sustainable development
Conclusions

• The world:
 • is vulnerable to human-induced climate change and loss of biodiversity
 • has considerable opportunities to increase the efficient use of energy and to exploit cost-effective renewable energy technologies, and conserve and sustainably use biodiversity
 • must recognize that there is no dichotomy between economic growth and protecting the environment, indeed, the old philosophy of pollute now and clean-up later has been completely discredited

The world is not on course to achieve the Aichi targets or the Paris agreement, hence undermining the SDGs

Act now to transition to a low-carbon economy
Act now to conserve and protect biodiversity

We need to generate new knowledge (e.g., Future Earth) and assess knowledge (IPCC and IPBES) for informed decision-making
The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

- **Objective**: Strengthen the science-policy interface by providing policy relevant knowledge on biodiversity and ecosystem services to inform decision making – biodiversity equivalent of IPCC

- Currently 127 Members (Governments)

- Independent intergovernmental body administered by UNEP, serving all biodiversity-related MEAs and relevant UN agencies

- Currently implementing its first Work Programme (2014-2018)
The 4 functions of IPBES

IPBES was established with four agreed functions – all covered within the first work program (2014-2018) - The budget for the first work programme is about $40M, plus significant in-kind contributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>Deliver global, regional, thematic and methodological assessments on biodiversity and ecosystem services</td>
</tr>
<tr>
<td>Knowledge generation catalysis</td>
<td>Catalyse efforts to generate new knowledge</td>
</tr>
<tr>
<td>Policy support tools</td>
<td>Identify policy relevant tools/methodologies, facilitate their use, and promote and catalyse their further development</td>
</tr>
<tr>
<td>Capacity building</td>
<td>Prioritize key capacity building needs, and provide and call for financial and other support to address them</td>
</tr>
</tbody>
</table>
IPBES work follows this Conceptual Framework:
IPBES Assessments

2 full assessments completed and approved by IPBES-4 (Feb 2016)
- Pollination and pollinators associated with food production
- Scenarios and models of biodiversity & ecosystem services

5 assessments initiated in 2015 (to be delivered mid 2018)
- Land degradation and restoration
- 4 Regional/Subregional assessments
 - Africa
 - Americas
 - Asia-Pacific
 - Europe and Central Asia

Global assessment initiated in 2016 (to be delivered mid-2019)
THANK YOU